Psy 5036 Lecture 25
Recognition in background clutter:

The role of top-down processing in
segmentation & recognition

Object recognition in real images

Background
clutter and
Object recognition, given real images occlusion
® clutter, occlusion, noise
® role of cortical architecture
Background/context

Challenge of complexity in natural image input

® Enormous range of variability in the images for a
given object category, eg.“foxes”

® |ots of types of objects

® Enormous objective uncertainty regarding local
image features present for any given exemplar

can be useful

® Background can provide prior information.
E.g."index" cues, to narrow down the space of
possible objects to be recognized. Depth
context can be important. Oliva et al. (2003),
Torralba et al. (2006)

® For demonstrations of the role of background
semantic content for human recognition:

Biederman | (1972) Perceiving real-world scenes.
Science 177:77-80.




Background & clutter can also be
a problem

|. Segmentation is difficult because clutter
near a target object's borders produce
misleading edges.

2. There are also missing edges due to
Image patches corresponding to the car and person noise, |ighting variation, and occlusion

are the same except for 90 deg rotation where other surfaces may cover parts
of the target object

http://web.mit.edu/torralba/www/carsAndFacesinContext.html

Object recognition
given occlusion, clutter

Linking local information (features) likely to belong to
the same object or pattern

® |ocal ambiguity, noise

® need for good features & integration, generic
priors, e.g. smoothness, contour and region-based

grouping
Resolving competing explanations

® occlusion, clutter

® need for domain-specific priors




Good features,
like color &
stereo can help
with
segmentation
...but not always
there, and we
still need to
make decisions
about object
categories

Strategies

Discriminative mechanisms

* Use reliable low-level features.
Computational/behavioral speed and
accuracy requires effective diagnostic
features to deal with the enormous
with-class variation within a pattern/
object category

Generative mechanisms

* Provide flexibility

Discriminative models
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Bottom-up

Need to use/learn features to support reliable if
not perfect first, bottom-up pass

Hierarchical models
for feature extraction

® | ocal features progressively grouped into
more structured representations

® edges => contours/fragments => parts
=> objects

® Increased selectivity for object/pattern type

® Decreased sensitivity to view-dependent
variations of translation, scale and
illumination
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Edges to contours

Cue integration
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short segments

Parent P, Zucker SW (1989) Trace inference, curvature consistency, and curve
detection. IEEE Transactions on Pattern Analysis & Machine Intelligence
11:823-839.

Yuille AL, Fang F, Schrater P, Kersten D (2004) Human and Ideal Observers for Detecting
Image Curves. In: Advances in Neural Information Processing Systems 16 (Thrun S, Saul L,
Schoelkopf B, eds). Cambridge, MA: MIT Press.

Cortical basis?

Short segments to long lines!?
Within-area linkage?

Das A, Gilbert CD (1999) Topography of
contextual modulations mediated by short-range
interactions in primary visual cortex. Nature

| to 2 mm 399:655-661.

l




What if the edges supporting
boundaries are ambiguous!?
Region/texture-based grouping

From: Martin, D. R., Fowlkes, C. C., & Malik, J. (2004). Learning to detect
natural image boundaries using local brightness, color, and texture cues. IEEE
Trans Pattern Anal Mach Intell, 26(5), 530-549.

Texture-based grouping

® "A Database of Human Segmented

Natural Images and its Application to
Evaluating Segmentation Algorithms and

Measuring Ecological Statistics" D.
Martin, C. Fowlkes, D.Tal, and J. Malik.

ICCV 2001

® ‘“super-pixels”

Object recognition
given occlusion, clutter

Linking local information (features) likely to belong
to the same object or pattern

® |ocal ambiguity, noise

® need for generic priors, e.g. smoothness of
contours, color, texture statistics

Resolving competing explanations
® occlusion, clutter

® need for domain-specific features

Domain-specific
features

® How to learn features to support a variety
of actions, not just decisions about labels




Computational example: Learning
How to learn features to support a variety of inf i feat f task
actions, not just decisions about labels? INformative teatures for a tas

What do - ! =
e Size perception, e.g. for interception these S | .
scenes = e —-‘i_%_—_:::
® Material, e.g. for driving have in \

common!? .
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® Do discriminative features learned in one With Pl — PO T

® Object categorization

“Up” curbs-- that require a step up

T MINNESOTA

Distinguish from
Non- “up curbs”

...that do not
require a step




Selecting diagnostic
features

I(C; F) = H(C) — H(C|F)

F = argmgxI(C;F);
Fri1 = argmﬁxminI(C;ﬂFi)

Ullman, S.,Vidal-Naquet, M., & Sali, E. (2002).Visual features of intermediate
complexity and their use in classification. Nat Neurosci, 5(7), 682-687.

oFind fragments that
maximize mutual
information (Ullman et al.,

Learning based on informative
fragments for the task

2002; Bart et al, 2004)

e Detect “up curbs” from
an approach angle that
requires a step
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Learning object categories

Do image features (fragments) that maximize mutual
information predict the features that human observers
learn to use?

Use novel object classes with small
within-class variation and slightly larger
between-class variation

Virtual phylogenesis of digital embryos

Hegde, ]., Bart, E., & Kersten, D. (2008). Fragment-Based Learning of Visual Object Categories.
Curr Biol. 18,597-601

Virtual Phylogenesis
nlcosahedron

Gn...

Shape Class C




Training

A or B?

Results:
Transfer of skill?

® For new previously unseen exemplars?

® Yes. Human observer classification
was predicted by features chosen to
maximize mutual information. In 3
other words, a set of features that
were shared within a class, but at the |
same time most effective at '
discriminating classes

Hegde, )., Bart, E., & Kersten, D. (2008). Fragment-Based Learning of Visual
Object Categories. Curr Biol. 18,597-601

But what if ambiguity is high:
missing edges and/or no texture!

Top-down, generative models?

Solving “perceptual puzzles”: Auxiliary evidence
for occlusion




Recognition despite cast shadows Uses of a generative model
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Cavanagh P (1991) What's up in top-down processing? In: Representations of Vision: Trends Bottom-up
and tacit assumptions in vision research (Gorea A, ed), pp 295-304. Cambridge, UK:

Cambridge University Press.

* Doesn’t mean that feedback is necessary
. . for recognition
A generative model could be used in many g

ways. Generating prediction errors is just one.
One could also use it to highlight lower-level
featlures .that are consistent with the high-level « for achieving high-performance given
explanation. uncertainty, noise, clutter

* Rather, top-down feedback used as
needed

* learning new object models




Computer vision
Image parsing: analysis by synthesis
(Tu, z., Chen, x., vuille, A, & Zhu, S. (2005))

. scene
Find most probable scene

description

text face background
Bottom-up
“proposals” (cues) to access O O O
three types of models (text, €.L.0)  (€.L.0)  (§.L.0)

faces, background/texture)
models

Verification through top-
down synthesis

If bottom-up proposals are
good, synthesis is not
needed to find most
probable scene

Flexible graph

Image parsing &
“Explaining away”’

Tu, Z., Chen, X., Yuille, A., & Zhu, S.
(2005). Image Parsing: Unifying
Segmentation, Detection and
Recognition. IJCV, 63(2).

Neural evidence for top-down role in
resolving ambiguity?
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Shape perception can reduce
VI activity
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Murray, S. O., Kersten, D., Olshausen, B. A., Schrater, P., & Woods, D. L. (2002). Shape perception
reduces activity in human primary visual cortex. Proc Natl Acad Sci U S A, 99, 15164-15169.
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Cortical Mechanism!?
...some speculation

|. Feedforward: local features to objects
2. Feedback models
a. Feedforward + attention:

competitive selection of features

b. Predictive coding Internal
generative
c. Sparsification models

MacKay DM (1956) The epistemological problem for automata. In: Automata
Studies (Shannon CE, McCarthy J, eds), pp 235-250. Princeton: Princeton
University Press.




Cortical organization
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Cortical organization

® Organization of visual cortices is a hierarchy

® Depends on distinct feedforward/feedback

pathways

Different laminar specificity

More backward connections

Backward connections more diffuse

Object recognition?

Bidirectional processing

ascending pathway
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Current Biology

Shipp, S. (2007). Structure and function of the cerebral cortex. CURBIO, 17(12), R443-9. doi:10.1016/j.cub.2007.03.044




® Sparse axonal bifurcations

® Topographically organized

Forward connections

® Originate in supragranular layers (111,111

® Terminate in layer IV

® ||l => adjacent columns

® || => other cortical areas

Friston K (2003) Learning and inference in the brain. Neural Netw 16:1325-1352.

Feedback connections

Lots of axonal bifurcation

Diffuse topography

Orriginate in infragranular (V,VI) layers

Mainly terminate in supragranular layers
(1,1,111)

Friston K (2003) Learning and inference in the brain. Neural Netw 16:1325-1352.

Markov, N. T., & Kennedy, H. (2013). The importance of being hierarchical. Current Opinion in Neurobiology, 1-8. doi:10.1016/j.conb.
2012.12.008
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Figure courtesy of Ray Guillery

Internal generative models
Analysis-by-synthesis

Predictive coding

® High-level object models project back
predictions of the incoming data

Poor fit, high residual => high activity
Sparsification
® A good high-level fit tells earlier areas to
“stop gossiping”
Amplify the activity for early features that
belong to object, suppress the rest




Predictive (top-down)

Predictive coding
processes in the brain?

Feedforward

Feedforward
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e.g. Rao, R. P, & Ballard, D. H. (1997). Dynamic model of visual recognition predicts
neural response properties in the visual cortex. Neural Comput, 9(4), 721-763.
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Predictive coding
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Lower area erorsignal Hicher area
%) &
e ’ Predictive
Input estimator

Inhibition ’

Feedback
prediction M)

Sparsification
“Stop gossiping”
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Grossberg S (1994) 3-D vision and figure-ground separation by visual
cortex. Percept Psychophys 55:48-121.
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Sparsification

“Stop gossiping”
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Bayesian Interpretation
Sparsification
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Lee & Mumford. 2003 JOSA . Zhu, L., & Yuille, A. L. (2011). A hierarchical

Particle filtering ideas: Isard M, Blake A (1998)
Condensation -- conditional density propagation
for visual tracking. International Journal of
Computer Vision 29:5--28.

compositional system for rapid object Zhu, L., Chen,
Y., & Yuille, A. (2011). Recursive Compositional
Models for Vision: Description and Review of Recent
Work. Journal of Mathematical Imaging and Vision,
41(1-2), 122—146. doi:10.1007/s10851-011-0282-2.

Summary

Common patterns of neocortex structure

® Has inspired lots of models of cortical
information processing

Key target problem?

® Object perception/recognition given
occlusion, clutter

fMRI and object grouping given occlusion

® consistent with feedback, but...




