
Psy 5036 Lecture 25	


Recognition in background clutter:	



!

The role of top-down processing in 
segmentation & recognition

Object recognition, given real images	



• clutter, occlusion, noise	



• role of cortical architecture 

Object recognition in real images

Background 
clutter and 
occlusion

• Enormous range of variability in the images for a 
given object category, eg. “foxes”	



• Lots of types of objects	



• Enormous objective uncertainty regarding local 
image features present for any given exemplar

Challenge of complexity in natural image input

• Background can provide prior information. 
E.g."index" cues, to narrow down the space of 
possible objects to be recognized. Depth 
context can be important. Oliva et al. (2003), 
Torralba et al. (2006) 	



• For demonstrations of the role of background 
semantic content for human recognition:	



Biederman I (1972) Perceiving real-world scenes. 
Science 177:77-80.

Background/context 
can be useful



http://web.mit.edu/torralba/www/carsAndFacesInContext.html

Image patches corresponding to the car and person	


are the same except for 90 deg rotation

Background & clutter can also be 
a problem

!

1. Segmentation is difficult because clutter 
near a target object's borders produce 
misleading edges. 	



2. There are also missing edges due to 
noise, lighting variation, and occlusion 
where other surfaces may cover parts 
of the target object

Object recognition 
given occlusion, clutter

Linking local information (features) likely to belong to 
the same object or pattern	



• local ambiguity, noise	



• need for good features & integration, generic 
priors, e.g. smoothness, contour and region-based 
grouping	



Resolving competing explanations	



• occlusion, clutter	



• need for domain-specific priors



Good features, 
like color & 

stereo can help 
with 

segmentation	


...but not always 
there, and we 
still need to 

make decisions 
about object 
categories

Strategies
Discriminative mechanisms	



• Use reliable low-level features. 
Computational/behavioral speed and 
accuracy requires effective diagnostic 
features to deal with the enormous 
with-class variation within a pattern/
object category	



Generative mechanisms	



• Provide flexibility

B

Discriminative models

Need to use/learn features to support reliable if 
not perfect first, bottom-up pass

Hierarchical models 
for feature extraction
• Local features progressively grouped into 

more structured representations	



• edges => contours/fragments => parts 
=> objects	



• Increased selectivity for object/pattern type	



• Decreased sensitivity to view-dependent 
variations of translation, scale and 
illumination



Riesenhuber & Poggio, 1999

S - simple cell like

C - complex cell like

Edges to contours
Cue integration

Long line

short segments

Parent P, Zucker SW (1989) Trace inference, curvature consistency, and curve 
detection. IEEE Transactions on Pattern Analysis & Machine Intelligence 
11:823-839.

Yuille AL, Fang F, Schrater P, Kersten D (2004) Human and Ideal Observers for Detecting 
Image Curves. In: Advances in Neural Information Processing Systems 16 (Thrun S, Saul L, 
Schoelkopf B, eds). Cambridge, MA: MIT Press.

Cortical basis?
Short segments to long lines?  

Within-area linkage?

1 to 2 mm

1 to 2 mm

~ 8 mm

Das A, Gilbert CD (1999) Topography of 
contextual modulations mediated by short-range 
interactions in primary visual cortex. Nature 
399:655-661.



What if the edges supporting 
boundaries are ambiguous? 	



Region/texture-based grouping

From: Martin, D. R., Fowlkes, C. C., & Malik, J. (2004). Learning to detect 
natural image boundaries using local brightness, color, and texture cues. IEEE 
Trans Pattern Anal Mach Intell, 26(5), 530-549.

Texture-based grouping

• "A Database of Human Segmented 
Natural Images and its Application to 
Evaluating Segmentation Algorithms and 
Measuring Ecological Statistics" D. 
Martin, C. Fowlkes, D. Tal, and J. Malik. 
  ICCV 2001	



• “super-pixels”

Object recognition 
given occlusion, clutter

Linking local information (features) likely to belong 
to the same object or pattern	



• local ambiguity, noise	



• need for generic priors, e.g. smoothness of 
contours, color, texture statistics	



Resolving competing explanations	



• occlusion, clutter	



• need for domain-specific features

Domain-specific 
features

• How to learn features to support a variety 
of actions, not just decisions about labels



• Size perception, e.g. for interception	



• Material, e.g. for driving	



• ...	



• Object categorization	



• Do discriminative features learned in one 
task transfer to another?

How to learn features to support a variety of 
actions, not just decisions about labels?

Computational example: Learning 
informative features for a task

What do 
these 
scenes 
have in 
common?

With 
Evgeniy Bart

“Up” curbs-- that require a step up

Distinguish from 
Non- “up curbs”

...that do not 
require a step

But may require a different 
action



Selecting diagnostic 
features

Ullman, S., Vidal-Naquet, M., & Sali, E. (2002). Visual features of intermediate 
complexity and their use in classification. Nat Neurosci, 5(7), 682-687.	



Figure 2: Examples of fragments selected automatically by the max-min
algorithm (see text).

image fragment F and a class C is given by:

I(C; F ) = H(C) − H(C|F ). (1)

Here H is the entropy, which represents the uncertainty. Mutual information
therefore measures the reduction in uncertainty about the presence of class C
given the fragment F [4]. Therefore, mutual information is a natural measure
of fragment usefulness.

Mutual information can be expressed in terms of the joint probability
distribution of C and F as follows:

I(C; F ) =
1∑

c,f=0

p(C = c, F = f) log
p(C = c, F = f)

p(C = c)p(F = f)
, (2)

where 1 or 0 values indicate the presence or the absence, respectively, of the
fragment and the class. This joint distribution is estimated from training
examples of class and non-class images.

To determine the presence of a given fragment F in an image, the frag-
ment is compared to the image at all relevant locations by using a similarity
measure such as normalized cross-correlation. Normalized cross-correlation
is given by

NCC(p, F ) =
1

N

∑
x,y(p(x, y) − p)(F (x, y) − F )

σpσF

. (3)

Here F (x, y) is the fragment, p(x, y) is an image patch of the same size as F ,
N is the number of pixels in the fragment, p, F are the means and σp, σF are
the standard deviations of the intensities of p and F . When the correlation
at some location exceeds a pre-determined threshold θF , the fragment is
considered present, or active, in the image.

As the threshold θF , used for the fragment F , is increased, fewer instances
of F will be detected. The threshold thus affects the frequency of detecting
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the fragment F and therefore its mutual information (eq. (2)). Therefore,
the optimal value for the threshold θF is the one that maximizes the infor-
mation delivered by the fragment about the class. The optimal threshold is
determined automatically for each fragment during training.

The next step is to select a bank B of n fragments B = {F1, . . . , Fn} with
the highest mutual information about the class C. Since evaluating joint
distributions of multiple variables is impractical, a greedy iterative approx-
imation can be used. The selection process is initialized by identifying the
fragment F1 with the highest mutual information. Fragments are then added
one by one, until the gain in mutual information is small, or until a limit on
the set size n is reached. To expand a size-k fragment set B = {F1, . . . , Fk}
to size k +1, a new fragment Fk+1 is selected that adds the maximal amount
of new information to the set. Formally, the conditional mutual information
between Fk+1 and the class given the current fragment set must be maxi-
mized: Fk+1 = arg max I(C; Fk+1|B). Estimating I(C; Fk+1|B) still depends
on multiple fragments. The term I(C; Fk+1|B) can be conveniently approxi-
mated by minFi∈B I(C; Fk+1|Fi). This term involves just two fragments and
can be computed efficiently from the training data. The approximation es-
sentially takes into account correlations between pairs of fragments, but not
higher order interactions. It ensures that the new fragment Fk+1 is informa-
tive, and that the information it contributes is not contained in any of the
previously selected fragments. Simulations comparing this approximation to
more complex methods confirmed that for different object classes the use of
higher-order statistical measures does not improve significantly the selected
set of fragments.

In summary, the overall selection process seeks to maximize the amount
of information about the class contained by a limited number of informative
fragments that are as independent as possible. The overall algorithm for
selection can be summarized as:

F1 = arg max
F

I(C; F );

Fk+1 = arg max
F

min
i

I(C; F |Fi). (4)

The second stage determines the contribution of a fragment F by finding
the most similar fragment already selected (this is the min stage) and then
selects the new fragment with the largest contribution (the max stage). The
full computation is therefore called the max-min selection. Examples of frag-
ments selected automatically by the max-min algorithm are shown in Figure
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Learning based on informative 
fragments for the task

With Evgeniy Bart

•Find fragments that 
maximize mutual 
information (Ullman et al., 
2002; Bart et al, 2004)	



• Detect “up curbs” from 
an approach angle that 
requires a step

Learning object categories
Do image features (fragments) that maximize mutual 
information predict the features that human observers 
learn to use?

Hegde, J., Bart, E., & Kersten, D. (2008). Fragment-Based Learning of Visual Object Categories. 
Curr Biol. 18, 597-601

Use novel object classes with small 
within-class variation and slightly larger 

between-class variation

Virtual phylogenesis of digital embryos

Virtual Phylogenesis



Training

A B
A or B?

Results: 
Transfer of skill?

• For new previously unseen exemplars?	



• Yes. Human observer classification 
was predicted by features chosen to 
maximize mutual information. In 
other words, a set of features that 
were shared within a class, but at the 
same time most effective at 
discriminating classes

AHegde, J., Bart, E., & Kersten, D. (2008). Fragment-Based Learning of Visual 
Object Categories. Curr Biol. 18, 597-601

But what if ambiguity is high: 
missing edges and/or no texture?

Top-down, generative models?

Solving “perceptual puzzles”: Auxiliary evidence 
for occlusion

o or 
?



Recognition despite cast shadows

Cavanagh P (1991) What's up in top-down processing? In: Representations of Vision: Trends 
and tacit assumptions in vision research (Gorea A, ed), pp 295-304. Cambridge, UK: 
Cambridge University Press.

Uses of a generative model

In contrast with strictly feedforward

A generative model could be used in many 
ways. Generating prediction errors is just one. 
One could also use it to highlight lower-level 
features that are consistent with the high-level 
explanation.

• Doesn’t mean that feedback is necessary 
for recognition	



• Rather, top-down feedback used as 
needed 	



• for achieving high-performance given 
uncertainty, noise, clutter	



• learning new object models



Computer vision 
Image parsing: analysis by synthesis 

(Tu, Z., Chen, X., Yuille, A., & Zhu, S. (2005))

models [38] [39]. In particular, the pattern types can be expanded to include material properties

which are not explicit objects.

The advantages of a generative model for the entire image include the ability to “explain away”.

Submodels corresponding to different objects, or processes, compete and cooperate to explain dif-

ferent parts of the image (e.g. the letter B plus bar competes with the interpretation of accidentally

aligned fragments in Figure 1B). A face model might hallucinate a face in the trunk of a tree; but a

tree model can overule this and provide the correct interpretation of the tree trunk, see Figure (5).

In addition, full generative models enforce consistency of the interpretation of the image.

text backgroundface

),,(
111

ΘLζ ),,(
222

ΘLζ ),,(
333

ΘLζ

scene

A. B.

Figure 3: A. The image is generated (left panel) by a probabilistic context free grammar shown by

a two layer graph with nodes with properties (ζ, l, θ) corresponding to regions Li in the image. B.

The right panel shows samples from the face model and the letter model – i.e. from p(IR(L)|ζ, L,Θ).

We now switch to the task of performing inference on this generative model to estimate W ∗ =

arg maxW P (W |I). This requires a sophisticated inference algorithm that can perform operations

such as creating nodes, deleting nodes, diffusing the boundaries, and altering the node attributes.

The strategy used in [3] is to perform analysis by synthesis by a data-driven Markov Chain Monte

Carlo (DDMCMC) algorithm. This algorithm is guaranteed to converge by standard properties

of MCMC. Informally, low-level cues are used to make hypotheses about the scene which can be

verified or rejected by sampling from the models. For example, low-level cues [31, 32] can be used

to hypothesize that there is a face in a region of the image. This hypothesis can be validated

or rejected by sampling from a generative face model. The bottom-up cues propose that there

are faces in the tree bark, but this proposal is rejected by the top-down generative model, see

Figure (5). Inference is performed by applying a set of operators which change the structure of the

parse graph, see Figure (4). These operators are implemented by transition kernels K, see Box 1

for a more technical description of the algorithm. The bottom-up cues are based on discriminative

models which are described in Box 2.
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• Find most probable scene 
description	



• Bottom-up 
“proposals” (cues) to access 
three types of models (text, 
faces, background/texture) 
models	



• Verification through top-
down synthesis	



• If bottom-up proposals are 
good, synthesis is not 
needed to find most 
probable scene	



• Flexible graph

Figure 5: Top left: Input image. Top right: Bottom-up proposals for text and faces are shown

by boxes. A face is “hallucinated” in a tree. Bottom centre: Overall segmentation (bottom left),

Detection of letters and faces. Bottom right: Synthesised image

There is evidence that reliable diagnostic information for certain categories is available from very

simple image measurements [35, 32], and that humans make certain categorical decisions sufficiently

fast to preclude a verification loop [40](but see [41] and [42]).

“Where do the generative models come from?”

Ideally the generative models, the discriminative models, and the stochastic grammar would all

be learnt from natural images. This is not difficult in principle because, as discussed in Griffiths

and Yuille, learning the model from data is simply another example of statistical inference. The

Helmholtz machine [43] gives an illustration of how a generative model, and an inference algorithm,

can be learnt. This approach, however, has been applied only to simple visual stimuli. Similarly

Friston [16] suggests learning models using the Expectation-Maximization algorithm. Although

this is a useful metaphor, the challenge is to see whether this idea can be translated to algorithms

that can deal with the complexities of natural images.

Learning generative and discriminative models is an extremely difficult problem in practice

due to the large dimensionality of natural images. There has recently, however, been dramatic

progress on the similar, but arguably simpler, problem of learning a stochastic grammar for natural

languages (see article by Chater and Manning). At present, different components of the image

parsing model are learnt individually. For example, the discriminative models for text and faces

are trained using labelled examples of “face”, “text”, and “non-face”, “non-text”. Similarly the
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Image parsing & 
“Explaining away”

Tu, Z., Chen, X., Yuille, A., & Zhu, S. 
(2005). Image Parsing: Unifying 
Segmentation, Detection and 
Recognition. IJCV, 63(2).

Input

Bottom-up result

Figure 5: Top left: Input image. Top right: Bottom-up proposals for text and faces are shown

by boxes. A face is “hallucinated” in a tree. Bottom centre: Overall segmentation (bottom left),

Detection of letters and faces. Bottom right: Synthesised image
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Synthesized image

Figure 5: Top left: Input image. Top right: Bottom-up proposals for text and faces are shown

by boxes. A face is “hallucinated” in a tree. Bottom centre: Overall segmentation (bottom left),

Detection of letters and faces. Bottom right: Synthesised image
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False alarm

Figure 5: Top left: Input image. Top right: Bottom-up proposals for text and faces are shown

by boxes. A face is “hallucinated” in a tree. Bottom centre: Overall segmentation (bottom left),

Detection of letters and faces. Bottom right: Synthesised image

There is evidence that reliable diagnostic information for certain categories is available from very

simple image measurements [35, 32], and that humans make certain categorical decisions sufficiently

fast to preclude a verification loop [40](but see [41] and [42]).

“Where do the generative models come from?”

Ideally the generative models, the discriminative models, and the stochastic grammar would all

be learnt from natural images. This is not difficult in principle because, as discussed in Griffiths

and Yuille, learning the model from data is simply another example of statistical inference. The

Helmholtz machine [43] gives an illustration of how a generative model, and an inference algorithm,

can be learnt. This approach, however, has been applied only to simple visual stimuli. Similarly

Friston [16] suggests learning models using the Expectation-Maximization algorithm. Although

this is a useful metaphor, the challenge is to see whether this idea can be translated to algorithms

that can deal with the complexities of natural images.

Learning generative and discriminative models is an extremely difficult problem in practice

due to the large dimensionality of natural images. There has recently, however, been dramatic

progress on the similar, but arguably simpler, problem of learning a stochastic grammar for natural

languages (see article by Chater and Manning). At present, different components of the image

parsing model are learnt individually. For example, the discriminative models for text and faces

are trained using labelled examples of “face”, “text”, and “non-face”, “non-text”. Similarly the
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False alarm 
explained 

away

Next 
Learning object categories 
Spatial layout

!

!

Neural evidence for top-down role in 
resolving ambiguity? Whole shapes -> 

Lateral occipital 
complex (LOC)

Primary visual 
cortex (V1) -

> Local, 
oriented, 

moving edges	





“Object” area Local “feature” area

Murray, S. O., Kersten, D., Olshausen, B. A., Schrater, P., & Woods, D. L. (2002). Shape perception 
reduces activity in human primary visual cortex. Proc Natl Acad Sci U S A, 99, 15164-15169.!

Shape perception can reduce 
V1 activity

Explanation?	


!
Many...	


!

“Explaining 
away” through 
predictive 
coding	


!
Sparse coding	



Structure from motion

V1
LOC

Internal	


generative	



models

1. Feedforward: local features to objects	



2. Feedback models	



a. Feedforward + attention: 	



competitive selection of features	



b. Predictive coding	



c. Sparsification

Cortical Mechanism? 
...some speculation

MacKay DM (1956) The epistemological problem for automata. In: Automata 
Studies (Shannon CE, McCarthy J, eds), pp 235-250. Princeton: Princeton 
University Press.



Cortical  organization
Cortical  organization

• Organization of visual cortices is a hierarchy	



• Depends on distinct feedforward/feedback 
pathways	



• Different laminar specificity	



• More backward connections	



• Backward connections more diffuse

V1 => V2 =>V4 =>IT

V1 <= V2 <=V4 <=IT

Object recognition?

Shipp, S. (2007). Structure and function of the cerebral cortex. CURBIO, 17(12), R443–9. doi:10.1016/j.cub.2007.03.044

Superficial

Deep

Bidirectional processing



Forward connections

• Sparse axonal bifurcations	



• Topographically organized	



• Originate in supragranular layers (I,II,III)	



• III => adjacent columns	



• II => other cortical areas	



• Terminate in layer IV

Friston K (2003) Learning and inference in the brain. Neural Netw 16:1325-1352.

Feedback connections

• Lots of axonal bifurcation	



• Diffuse topography	



• Originate in infragranular (V, VI) layers	



• Mainly terminate in supragranular layers 
(I,II,III)

Friston K (2003) Learning and inference in the brain. Neural Netw 16:1325-1352.

Markov, N. T., & Kennedy, H. (2013). The importance of being hierarchical. Current Opinion in Neurobiology, 1–8. doi:10.1016/j.conb.
2012.12.008

Figure  courtesy of Ray Guillery

Internal generative models 
Analysis-by-synthesis

 Predictive coding	



• High-level object models project back 
predictions of the incoming data	



Poor fit, high residual => high activity	



Sparsification	



• A good high-level fit tells earlier areas to 
“stop gossiping”	



Amplify the activity for early features that 
belong to object, suppress the rest



Predictive (top-down)	


processes in the brain?

Lower area	


(V1) Higher area

HiLo

Predictive
estimatorInput

Inhibition

Feedforward
error signal

Feedback
prediction

e.g. Rao, R. P., & Ballard, D. H. (1997). Dynamic model of visual recognition predicts 
neural response properties in the visual cortex. Neural Comput, 9(4), 721-763.

HiLo

Predictive
estimatorInput

Inhibition

Feedforward
error signal

Feedback
prediction

Predictive coding

Lower area	


(V1) Higher area

HiLo

Predictive
estimatorInput

Inhibition

Feedforward
error signal

Feedback
prediction

Predictive coding

Lower area	


(V1) Higher area

Predictive
estimatorInput

Inhibition

Feedforward
error signal

Feedback
prediction

HiLo

Predictive coding

Lower area	


(V1) Higher area



Predictive
estimatorInput

Inhibition

Feedforward
error signal

Feedback
prediction

HiLo

Predictive coding

Lower area	


(V1) Higher area

HiLo

Sparsification	


“Stop gossiping”

Lower area	


(V1)

Higher areas	


(LOC)

Grossberg S (1994) 3-D vision and figure-ground separation by visual 
cortex. Percept Psychophys 55:48-121.

HiLo

Sparsification	


“Stop gossiping”

Lower area	


(V1)

Higher areas	


(LOC)

HiLo

Sparsification	


“Stop gossiping”

Lower area	


(V1)

Higher areas	


(LOC)



HiLo

Sparsification	


“Stop gossiping”

Lower area	


(V1)

Higher areas	


(LOC)

HiLo

Sparsification	


“Stop gossiping”

Lower area	


(V1)

Higher areas	


(LOC)

Lee & Mumford, 2003, JOSA

HiLo

Bayesian Interpretation	


Sparsification

Lower area	


(V1)

Higher areas	


(LOC)

p(x0 | x1)p(x1 | x2) /Z1 1 2 2 3p(x | x )p(x | x ) /Z2

p(x1 | x2) p(x2 | x3)

x0 x1 x2

Particle filtering ideas: Isard M, Blake A (1998) 
Condensation -- conditional density propagation 
for visual tracking. International Journal of 
Computer Vision 29:5--28.

Zhu, L., & Yuille, A. L. (2011). A hierarchical 
compositional system for rapid object Zhu, L., Chen, 
Y., & Yuille, A. (2011). Recursive Compositional 
Models for Vision: Description and Review of Recent 
Work. Journal of Mathematical Imaging and Vision, 
41(1-2), 122–146. doi:10.1007/s10851-011-0282-2.

Summary
Common patterns of neocortex structure	



• Has inspired lots of models of cortical 
information processing	



Key target problem?	



• Object perception/recognition given 
occlusion, clutter	



fMRI and object grouping given occlusion	



• consistent with feedback, but...


